Hoved tekniske parametre
projekt | karakteristisk | |
temperaturområde | -40 ~+70 ℃ | |
Bedømt spænding | 3.8V-2.5V, maksimal opladningsspænding: 4.2V | |
Elektrostatisk kapacitetsområde | -10%~+30%(20 ℃) | |
Holdbarhed | Efter kontinuerlig påføring af den nominelle spænding i 1000 timer på +70 ℃, når de vender tilbage til 20 ℃ til test, skal følgende poster være opfyldt: | |
Kapacitetsændringshastighed | Inden for ± 30% af den oprindelige værdi | |
ESR | Mindre end 4 gange den oprindelige standardværdi | |
Højtemperaturlagringsegenskaber | Efter at have været placeret ved +70 ° C i 1.000 timer uden belastning, når de returneres til 20 ° C til test, skal følgende poster være opfyldt: | |
Elektrostatisk kapacitansændringshastighed | Inden for ± 30% af den oprindelige værdi | |
ESR | Mindre end 4 gange den oprindelige standardværdi |
Produkter dimesnion
Fysisk dimension (enhed: MM)
| A = 1,5 | ||||||||
L> 16 | A = 2,0 | ||||||||
D | 8 | 10 | 12.5 | 16 | 18 | 22 | |||
d | 0,6 | 0,6 | 0,6 | 0,8 | 1 | 1 | |||
F | 3.5 | 5 | 5 | 7.5 | 7.5 | 10 |
Hovedformålet
♦ Udendørs internet af ting
♦ Smart Meter Market (vandmåler, gasmåler, varmemåler) kombineret med primært lithiumbatteri
Lithium-ion-kondensatorer (LICS) er en ny type elektronisk komponent med en struktur og arbejdsprincip adskilt fra traditionelle kondensatorer og lithium-ion-batterier. De bruger bevægelsen af lithiumioner i en elektrolyt til at opbevare ladning, der tilbyder høj energitæthed, lang cyklus levetid og hurtige ladningsudladningsevne. Sammenlignet med konventionelle kondensatorer og lithium-ion-batterier har LICS højere energitæthed og hurtigere ladningsudskiftningsgrader, hvilket gør dem vidt betragtet som et betydeligt gennembrud i fremtidig energilagring.
Ansøgninger:
Elektriske køretøjer (EVS): Med den stigende globale efterspørgsel efter ren energi bruges LIC'er i vid udstrækning i kraftsystemerne i elektriske køretøjer. Deres høje energitæthed og hurtige ladningsudladningskarakteristika gør det muligt for EV'er at opnå længere drivende intervaller og hurtigere opladningshastigheder, hvilket fremskynder vedtagelsen og spredningen af elektriske køretøjer.
Opbevaring af vedvarende energi: LICS bruges også til opbevaring af sol- og vindenergi. Ved at konvertere vedvarende energi til elektricitet og opbevare den i LICS opnås effektiv udnyttelse og stabil energiforsyning, der fremmer udvikling og anvendelse af vedvarende energi.
Mobile elektroniske enheder: På grund af deres høje energitæthed og hurtige opladningsudladningsevne bruges LICS i vid udstrækning i mobile elektroniske enheder såsom smartphones, tablets og bærbare elektroniske gadgets. De giver længere batterilevetid og hurtigere opladningshastigheder, hvilket forbedrer brugeroplevelsen og bærbarheden af mobile elektroniske enheder.
Energilagringssystemer: I energilagringssystemer anvendes LICS til belastningsbalancering, spidsbarbering og levering af backup -strøm. Deres hurtige respons og pålidelighed gør LICS til et ideelt valg til energilagringssystemer, der forbedrer netstabiliteten og pålideligheden.
Fordele i forhold til andre kondensatorer:
Høj energitæthed: LICS har højere energitæthed end traditionelle kondensatorer, hvilket gør det muligt for dem at opbevare mere elektrisk energi i et mindre volumen, hvilket resulterer i mere effektiv energiforbrug.
Hurtig opladningsudladning: Sammenlignet med lithium-ion-batterier og konventionelle kondensatorer tilbyder LICS hurtigere opladningsfrekvenser, hvilket giver mulighed for hurtigere opladning og afladning for at imødekomme efterspørgslen efter højhastighedsopladning og højeffekt output.
Lang cyklusliv: LICS har en lang cykluslevetid, der er i stand til at gennemgå tusinder af opladningsudladningscyklusser uden nedbrydning af ydelser, hvilket resulterer i udvidede levetid og lavere vedligeholdelsesomkostninger.
Miljøvenlighed og sikkerhed: I modsætning til traditionelle nikkel-cadmium-batterier og lithium-koboltoxidbatterier er LICS fri for tungmetaller og giftige stoffer, der udviser højere miljøvenlighed og sikkerhed og reducerer derved miljøforurening og risikoen for batterieksplosioner.
Konklusion:
Som en ny energilagringsenhed har lithium-ion-kondensatorer store applikationsudsigter og et betydeligt markedspotentiale. Deres høje energitæthed, hurtige opladningskarpacitetsfunktioner, lange cykluslevetid og miljømæssige sikkerhedsfordele gør dem til et vigtigt teknologisk gennembrud i fremtidig energilagring. De er klar til at spille en vigtig rolle i at fremme overgangen til ren energi og forbedre energiforbrugseffektiviteten.
Produktnummer | Arbejdstemperatur (℃) | Bedømt spænding (VDC) | Kapacitans (F) | Bredde (mm) | Diameter (mm) | Længde (mm) | Kapacitet (MAH) | ESR (Mωmax) | 72 timers lækstrøm (μA) | Livet (HRS) |
SLR3R8L2060813 | -40 ~ 70 | 3.8 | 20 | - | 8 | 13 | 10 | 500 | 2 | 1000 |
SLR3R8L3060816 | -40 ~ 70 | 3.8 | 30 | - | 8 | 16 | 12 | 400 | 2 | 1000 |
SLR3R8L4060820 | -40 ~ 70 | 3.8 | 40 | - | 8 | 20 | 15 | 200 | 3 | 1000 |
SLR3R8L5061020 | -40 ~ 70 | 3.8 | 50 | - | 10 | 20 | 20 | 200 | 3 | 1000 |
SLR3R8L8061020 | -40 ~ 70 | 3.8 | 80 | - | 10 | 20 | 30 | 150 | 5 | 1000 |
SLR3R8L1271030 | -40 ~ 70 | 3.8 | 120 | - | 10 | 30 | 45 | 100 | 5 | 1000 |
SLR3R8L1271320 | -40 ~ 70 | 3.8 | 120 | - | 12.5 | 20 | 45 | 100 | 5 | 1000 |
SLR3R8L1571035 | -40 ~ 70 | 3.8 | 150 | - | 10 | 35 | 60 | 100 | 5 | 1000 |
SLR3R8L1871040 | -40 ~ 70 | 3.8 | 180 | - | 10 | 40 | 80 | 100 | 5 | 1000 |
SLR3R8L2071330 | -40 ~ 70 | 3.8 | 200 | - | 12.5 | 30 | 70 | 80 | 5 | 1000 |
SLR3R8L2571335 | -40 ~ 70 | 3.8 | 250 | - | 12.5 | 35 | 80 | 50 | 6 | 1000 |
SLR3R8L3071340 | -40 ~ 70 | 3.8 | 300 | - | 12.5 | 40 | 100 | 50 | 8 | 1000 |
SLR3R8L4071630 | -40 ~ 70 | 3.8 | 400 | - | 16 | 30 | 120 | 50 | 8 | 1000 |
SLR3R8L5071640 | -40 ~ 70 | 3.8 | 500 | - | 16 | 40 | 200 | 40 | 10 | 1000 |
SLR3R8L7571840 | -40 ~ 70 | 3.8 | 750 | - | 18 | 40 | 300 | 25 | 12 | 1000 |
SLR3R8L1181850 | -40 ~ 70 | 3.8 | 1100 | - | 18 | 50 | 400 | 20 | 15 | 1000 |
SLR3R8L1582255 | -40 ~ 70 | 3.8 | 1500 | - | 22 | 55 | 550 | 18 | 20 | 1000 |